TREESEARCH logotype 2 black

KAW

Mechanical behavior of all-lignocellulose composites 

In this study, we investigated property differences and failure mechanisms of hot-pressed, binder-free wood fiber composites. Random-in-plane microfibrillated lignocellulose (MFLC) composites showed better mechanical properties than microscale wood fibers WF due to stronger strain-hardening from lower porosity and better interfibrillar adhesion, provided by the intrinsic lignin-hemicellulose binder. Axially oriented wood fiber composites (O-WF) reached comparable […]

Mechanical behavior of all-lignocellulose composites  Läs mer »

Mechanical aspects of bio based composites

The work consists of understanding the mechanical aspects of novel bio-based composites by exploring microstructures, weak interfaces, anisotropy, and lamella thickness. My current projects are (i) in situ mechanical tests with Deben microtester and scanning electron microscopes on a thin layer of montmorillonite clay on hydroxyethylcellulose films to investigate interfacial (adhesion) properties between the constituents,

Mechanical aspects of bio based composites Läs mer »

Colloidal properties of nanocellulose dispersions

The project aim is to control the stability and orientation of nanocellulose particles, by understanding the fundamental colloidal interactions between them in aqueous media. The information will then be used to create ordered and self-organized structures from nanocellulose dispersions. This knowledge is of great importance, since many nanocellulose based materials today are produced directly from

Colloidal properties of nanocellulose dispersions Läs mer »

Ex situ and in situ advanced electron microscopy of enzymatic action for biomass tailoring and transport paths in conducting fibres and yarns

The structure of wood is complex with many components. As new cellulose-based materials and devices are to be developed and optimized it is crucial to understand the material microstructure of wood and also the properties of its individual microstructural constituents. Electron microscopy offers a unique capability for site specific imaging, diffraction and spectroscopy with high 

Ex situ and in situ advanced electron microscopy of enzymatic action for biomass tailoring and transport paths in conducting fibres and yarns Läs mer »

Polysaccharide Monooxygenases (LPMOs) for Advanced Nanocellulose Materials

LPMOs (lytic polysaccharide monooxygenases) are oxidative enzymes that enhance cellulose fibrillation by introducing charged carboxyl groups onto the cellulose surfaces in aqueous reaction conditions. The use of LPMOs in production of nanocelluloses could reduce the need of hazardous chemicals and facilitate more environmentally friendly processes. The aim of this subproject is to produce recombinant LPMOs

Polysaccharide Monooxygenases (LPMOs) for Advanced Nanocellulose Materials Läs mer »

Bio-based binders for molded cellulose fibers

Natural binders are inexpensive, biodegradable, environmentally friendly and renewable, but usually form weaker bonds and slightly harder to apply. The objective of the project is to develop and optimize the process of using various plant polysaccharides as binder for holocellulose fibers and cellulose nanofibrils (CNF). The selected polysaccharides are further functionalized to improve interfacial adhesion

Bio-based binders for molded cellulose fibers Läs mer »

H2O2 – Fuel and Energy Technology for the Future

Researching all-organic photo- and electro-catalysis to explore novel pathways to produce hydrogen peroxide, H2O2, and convert this fuel into electricity with a novel fuel cell technology. In order to achieve high-rate and large-volume production of H2O2 and conversion into electricity, we suggest to research and develop a novel catalytic paper electrode technology. These paper electrodes

H2O2 – Fuel and Energy Technology for the Future Läs mer »