Chalmers

Enzyme discovery and enzyme application on wood

Our project aims to identify enzymes that have the ability to increase the efficiency of the biorefinery process, designed for the production of biofuels, -chemicals, and -materials. Specifically, this project aims to find, characterize, and utilize, enzyme that attack specific bonds in the complex biomass structure, to increase the saccharification efficiency of cellulolytic enzyme cocktails …

Enzyme discovery and enzyme application on wood Läs mer »

Valorization of lignocellulosic biomass for non-fossil chemicals and fuels using photolysis based on LED

Sawdust, a valuable lignocellulosic biomass, is today considered waste and burnt to generate heat. Depending on the sawing process, sawdust might be up to 50% of the timber. An energy efficient valorization of lignocellulosic waste into non-fossil chemicals and fuels minimizes the CO2 footprint and contributes to a sustainable production. A major challenge is to …

Valorization of lignocellulosic biomass for non-fossil chemicals and fuels using photolysis based on LED Läs mer »

KAW Biocomposites

Technical objective The project is focused on materials design of biocomposites which are semi-structural, recyclable and/or biodegradable. The term “semi-structural” needs to be defined. If 30wt% glass fiber/polypropylene is selected as the reference material for substitution, it would mean that the modulus should be > 6 GPa and the tensile strength > 85 MPa. In …

KAW Biocomposites Läs mer »

Conducting cellulose fibres and yarns for circular electronic textiles

Conducting fibres and yarns are essential components of the next generation of wearable electronics that seamlessly integrate electronic function into one of the most versatile and most widely used form of materials: textiles. Necessary requirements are a high degree of wash and wear resistance. Traditionally, colouring of cotton, viscose and lyocell fibres is done with …

Conducting cellulose fibres and yarns for circular electronic textiles Läs mer »

Recyclable and Creep Resistant Polyethylene – through Transient Cellulose Networks

Plastics enhance almost every aspect of human life from food consumption to medical care and even energy production. However, the often superficial use of plastics means that a large fraction of this versatile class of materials is not recycled but, instead, burned for energy recovery, buried as waste in landfills, or worst case simply discarded …

Recyclable and Creep Resistant Polyethylene – through Transient Cellulose Networks Läs mer »

Development of advanced methods for investigation and counteracting of membrane fouling during recovery of extracted wood components in biorefinery applications

This project aims to develop and use advanced characterisation methods to investigate how process parameters can be utilised to decrease the effect of surface fouling during separation for recovery of high molecule weight hemicelluloses in biorefinery applications. Characteristics of formed fouling layers that are difficult to measure: thickness as well as cohesive and adhesive strength, …

Development of advanced methods for investigation and counteracting of membrane fouling during recovery of extracted wood components in biorefinery applications Läs mer »

Scale-up of sustainable production of dialdehyde cellulose and dialcohol cellulose

The project is a collaboration between Chalmers, KTH, BillerudKorsnäs and TetraPak.  The aim of the project is to develop a closed or semi-closed techno-economical feasible process for production of Dialdehyde cellulose, DAC and its derivatives with a target to replace plastic materials in different applications such as thermoforming, extrusion and moulding.  The project will have …

Scale-up of sustainable production of dialdehyde cellulose and dialcohol cellulose Läs mer »

Biocomposites from fibres and nanocellulose

The project is a post-doc project within WWSC 2.0 The engineering aim brought forward in the project is to produce composities by using chemically modified fibres and nanocellulose and use these as reinforcing-structural elements in a polymer matrix. The resulting composites material must be manufactured with conventional, possible slightly modified, polymer processing techniques in order …

Biocomposites from fibres and nanocellulose Läs mer »

Adsorption av funktionella polymerer tillcellulosa i blekningssteget – ett sätt att utöka fibrernas egenskaper

The purpose of this proposed project is to suggest new pathways for the adsorption reactions to cellulose fibers in the bleaching step in the kraft pulp process. The long-term aim is to develop a flexible knowledge platform that can be used for designing functionalized surfaces of the cellulose fibers in the bleaching step, using by …

Adsorption av funktionella polymerer tillcellulosa i blekningssteget – ett sätt att utöka fibrernas egenskaper Läs mer »

Production of new high-performance CNF biocomposites (Cellulose nano-composites)

The aim is to develop new methods for large-scale melt processing of thermoplastic composites reinforced with high content of cellulose nano-fibrils. The goal is a thermoplastic process capable of mixing and shaping thermoplastic compositions reinforced with 30 % or more nano-cellulose, obtaining a functional composite stiffness at least 10 times of the polymer matrix. Alternatively, …

Production of new high-performance CNF biocomposites (Cellulose nano-composites) Läs mer »

Processing & Mechanics – Bio-based Polymer Composite Materials

With this project, we aim to advance the understanding, synthesis, manufacturing and modelling of biocomposites. In particular, we target polymers reinforced with cellulose fibers that have been grafted with cellulose nano crystals, the wood-based cellulose fibers and nano crystals are an important resource from the Swedish forest industry. The idea is to scale up a …

Processing & Mechanics – Bio-based Polymer Composite Materials Läs mer »