TREESEARCH logotype 2 black

Chalmers

Adsorption av funktionella polymerer tillcellulosa i blekningssteget – ett sätt att utöka fibrernas egenskaper

The purpose of this proposed project is to suggest new pathways for the adsorption reactions to cellulose fibers in the bleaching step in the kraft pulp process. The long-term aim is to develop a flexible knowledge platform that can be used for designing functionalized surfaces of the cellulose fibers in the bleaching step, using by […]

Adsorption av funktionella polymerer tillcellulosa i blekningssteget – ett sätt att utöka fibrernas egenskaper Läs mer »

Production of new high-performance CNF biocomposites (Cellulose nano-composites)

The aim is to develop new methods for large-scale melt processing of thermoplastic composites reinforced with high content of cellulose nano-fibrils. The goal is a thermoplastic process capable of mixing and shaping thermoplastic compositions reinforced with 30 % or more nano-cellulose, obtaining a functional composite stiffness at least 10 times of the polymer matrix. Alternatively,

Production of new high-performance CNF biocomposites (Cellulose nano-composites) Läs mer »

Processing & Mechanics – Bio-based Polymer Composite Materials

With this project, we aim to advance the understanding, synthesis, manufacturing and modelling of biocomposites. In particular, we target polymers reinforced with cellulose fibers that have been grafted with cellulose nano crystals, the wood-based cellulose fibers and nano crystals are an important resource from the Swedish forest industry. The idea is to scale up a

Processing & Mechanics – Bio-based Polymer Composite Materials Läs mer »

Pre-project ForMAX beamline

This project is focused on SAXS measurements to study structuring of fibrilar systems under flow, such as 3D printing, electro spinning and fibre spinning. The project is in the framework of the feasibility study on the ForMAX beamline at MAX IV. Controlled alignment of for example cellulose nanofibrils is of high interest, since their mechanical

Pre-project ForMAX beamline Läs mer »

All wood composites

Lightweight structural composites are a great way to reduce overall weight. Bio-based composites are used to replace fossil-based materials in non-structural applications. This project will develop new lightweight structural materials that are comprised of bio-based constituents. One of the most important aspects to understand when developing new composites is the interface functionalization chemistry and its impact on rheological

All wood composites Läs mer »

Polysaccharide films – formation and properties

Turning wood-based polymers and particles into films is vital for majority of their utilization (packaging, support materials) and for fundamental analytics (model surfaces for adsorption, interaction studies, strength characterization). Cellulose, hemicelluloses and lignins have distinct (from one another) intrinsic film formation behavior and properties that span from solubility, molecular weight and flexibility, and polarity. Main

Polysaccharide films – formation and properties Läs mer »

Advanced rheological characterization of cellulose based systems

Processing, e.g. extrusion, injection molding, typically involves rheologically complex materials in complex flow configurations. The deformation history therein experienced by materials is generally characterized by a series of shear, extensional, or a combination of the two deformations, at high isotopic pressures and temperatures. Therefore, a fundamental understanding of the material response in simple shear and

Advanced rheological characterization of cellulose based systems Läs mer »

Development of a new rheometer system at MAX IV

Rheometry explores the relationship between forces and motion through (continuum) constitutive relations and suitably defined material functionsi. Rheometry is important for soft matter from two main reasonsii: (i) to investigate correlations between molecular structure and material behavior and (ii) to attempt the prediction of flow behavior in complex situations using material parameters determined in simple,

Development of a new rheometer system at MAX IV Läs mer »

NMR as tool to study heterogeneity in biomass

In this project, the purpose is to implement solid-state NMR methods to obtain domain sizes in biopolymer composites and to determine molecular orientation distribution in anisotropic material. The ambition is to take advantage of recent methodological NMR development regarding spin diffusion and intrinsic chemical shielding tensor properties. The project is a part of WWSC

NMR as tool to study heterogeneity in biomass Läs mer »

Functionalized cellulose structures from aqueous alkaline systems

Even though aqueous alkaline systems are among the most prominent and sustainable conversion media for cellulose (of particular importance for large scale processes) fundamental understanding of principal molecular interactions in these systems is still limited, especially of those stabilizing cellulose solutions in aqueous alkali.   However, regardless of the nature of stabilizing interactions in these solutions,

Functionalized cellulose structures from aqueous alkaline systems Läs mer »

Enzyme discovery and structure-function investigation of carbohydrate-active enzymes – new tools for biomass tailoring

The plant cell wall is a highly complex structure, and the main constituent of wood as a material. Microorganisms can break down essentially all parts of the cell wall with time, and their enzymatic strategies can today be utilized thanks to the advances in molecular biology and biochemistry. The enzymes can be used as highly

Enzyme discovery and structure-function investigation of carbohydrate-active enzymes – new tools for biomass tailoring Läs mer »

Biokemisk omvandling av bark – en outnyttjad men rikligt förekommande resurs

Detta projekt syftar till att lägga en grund för ett effektivt nyttjande av bark via bioteknologiska metoder. Bark är en förnybar resurs som idag går till spillo i enorma mängder, då den räknas som en restprodukt utan värde. Barken innehåller en mängd komponenter som skulle kunna användas i energitillämpningar, och via biokemisk separation och nedbrytning

Biokemisk omvandling av bark – en outnyttjad men rikligt förekommande resurs Läs mer »