Biomass-derived hybrid materials and composites
The project aim is the design and engineering of biomass-derived composites to substitute petroleum-based materials.
The project aim is the design and engineering of biomass-derived composites to substitute petroleum-based materials.
Latex nanoparticles can be prepared via RAFT-mediated polymerization-induced self-assembly (PISA) in water. They are tailor-made and highly versatile nanoparticles that can be used for modification of cellulosic fibers due to their high affinity. Part of WWSC.
The projects aim to develop new materials based on renewable resources. The synthetic strategy involved is highly modular. This modularity enables a plethora of monomeric building blocks in one step. The final materials originate from abundant, cheap, and renewable reactants, meaning that the developed material would apply to all applications, ranging from advanced biomedical applications …
Sustainable High Performance Polymers from Functional Building-Blocks Created in Water Läs mer »
In this project vi use molecular dynamics (MD) simulations to investigate hygroscopic properties of various lignins. Our hope is that structure and dynamics on the atomistic level of details will complement existing macromechanical models. The goal is to test existing atomistic models of lignin subject to its interactions with water. The output of the project …
Theoretical study of lignin swelling in atomistic details Läs mer »
Laboratory X-ray tube-based microscopic computed tomography (XµCT) aided finite element (FE) modelling considers XµCT data to characterize key engineering properties needed for modelling of material behavior. The method includes steps such as XµCT scanning, segmentation, meshing, and fiber reconstruction and can be supported by techniques such as digital image correlation and digital volume correlation. At …
Microscopic computed tomography aided finite element modelling of wood Läs mer »
The project is on the development of artificial plant cells. This encompasses on one hand the development of plant cell models themselves (from layer-by-layer fabrication to more complex synthesis protocols) as well as method development of neutron and x-ray scattering techniques for the characterization of the artificial plant cells. In the end, a combination of …
Towards Improved Molecular Understanding of Artificial Plant Cells Läs mer »
With increasing focus on recycling, wood waste can increase its potential to generate secondary raw materials instead of incineration and landfilling. The quality of wood waste, as determined by the presence of material and mainly chemical impurities, is essential to ensure a high quality, clean and safe recycling loop for particleboards or for other emerging …
Resource-efficient and non-toxic material flows from wood waste Läs mer »
Typically imaging of wood cells by 3D nanotomography is performed with the help of TEM or cryo TEM. To get a proper transmission signal, samples should be cut down to 100 nm thickness or even less. In this project we want to avoid extreme sectioning of wood pieces where observation area includes only a part …
I am interested in fundamentals of cellulose nanofibers (CNF) and cellulose nanocrystals (CNC) in dilute, semi-dilute, and crowded environment. Specifically, for CNFs, semi-flexibility of fibers and its effect on nano-scale dynamics is a key aspect of my project. At the moment, combining simulations with experiments (X-ray photon correlation spectroscopy) is the strategy to proceed the …
Fundamentals of nanoscale assembly of cellulose nanofiber Läs mer »
The ability to modify the structure of the wood-pulp fibre cell wall structure is an attractive means to obtain increased accessibility to the fibre interior and enable functionalization such as controlled drug delivery, interpenetrated networks, and selective removal of metal ions from aqueous mixtures just to mention a few examples. By changing the physical state …
Structural Modification Softwood Pulp Cell Wall Under Extreme Pressure Conditions Läs mer »
In this study, we investigated property differences and failure mechanisms of hot-pressed, binder-free wood fiber composites. Random-in-plane microfibrillated lignocellulose (MFLC) composites showed better mechanical properties than microscale wood fibers WF due to stronger strain-hardening from lower porosity and better interfibrillar adhesion, provided by the intrinsic lignin-hemicellulose binder. Axially oriented wood fiber composites (O-WF) reached comparable …
Mechanical behavior of all-lignocellulose composites Läs mer »
Cellulose nanomaterials (CNs) obtained from fully-bleached (lignin-free) chemical fibers, such as cellulose nanoparticles (CNPs), cellulose nanofibers (CNFs), microfibrillated cellulose (MFC) have been a topic of extensive research during last decades since they constitute a biodegradable, renewable and naturally abundant resource with an important scientific and technological potential. However, the bleaching process is an energy-intensive process …
Preparation and use of lignocellulose nanomaterials in energy storage devices Läs mer »