Project theme: 4–material concepts

Magnetic nanopaper

This project is focused on production and development of magnetic nanopaper with ferrimagnetic properties. Cellulose nanofibrils (CNFs) are used as a stiff and strong matrix of natural origin, while ferrimagnatic nanoparticles of SrFe12O19 are added to bring in the functionality. Nanopaper is prepared by spray coating technique which is simple to handle and to upscale. …

Magnetic nanopaper Läs mer »

Hybrid Glycoproteins from Wheat Bran as Platform Materials

Vetekli är det yttre skiktet som omger kornens frövita och utgör den huvudsakliga biprodukten från vetemalningsprocessen och står för cirka 300 000 ton per år i Sverige. Vetekli används för närvarande nästan uteslutande industriellt som djurfoder på grund av lågt organoleptiskt värde och näringsvärde för mänsklig konsumtion. Vetekli innehåller emellertid en stor andel värdefulla biomolekyler …

Hybrid Glycoproteins from Wheat Bran as Platform Materials Läs mer »

Preparation and use of lignocellulose nanomaterials in energy storage devices

Cellulose nanomaterials (CNs) obtained from fully-bleached (lignin-free) chemical fibers, such as cellulose nanoparticles (CNPs), cellulose nanofibers (CNFs), microfibrillated cellulose (MFC) have been a topic of extensive research during last decades since they constitute a biodegradable, renewable and naturally abundant resource with an important scientific and technological potential. However, the bleaching process is an energy-intensive process …

Preparation and use of lignocellulose nanomaterials in energy storage devices Läs mer »

SISTERS

KTH is taking part in the EU funded Horizon 2020 project SISTERS. SISTERS aims to reduce food loss and food waste in the main different stages of the Food Value Chain in Europe through innovations targeted to each link of the value chain: new tools to primary producers for promoting direct and Short Chain sales …

SISTERS Läs mer »

Mechanical aspects of bio based composites

The work consists of understanding the mechanical aspects of novel bio-based composites by exploring microstructures, weak interfaces, anisotropy, and lamella thickness. My current projects are (i) in situ mechanical tests with Deben microtester and scanning electron microscopes on a thin layer of montmorillonite clay on hydroxyethylcellulose films to investigate interfacial (adhesion) properties between the constituents, …

Mechanical aspects of bio based composites Läs mer »

Deformation and fracture mechanisms of wood and wood polymer biocomposites

The main objective of this project is to study the deformation and fracture mechanisms of wood and polymer impregnated wood biocomposites, characterize the mechanical properties and relate them to structural differences. In this project, strain and deformation fields are measured, during mechanical loading, using digital image correlation which is useful for material comparison, also to …

Deformation and fracture mechanisms of wood and wood polymer biocomposites Läs mer »

Real time 4D X-ray microtomography Imaging and analysis of water transport mechanisms in sustainable paper straws

At present, there are no quantitative experimental studies for liquid transport with relevant spatial and temporal resolution in cellulose fiber networks. This project aims to improve the understanding of the dynamic interplay between water transport processes and the cellulose fiber network. In this way, the proportion of sorption of water in pores and cell walls …

Real time 4D X-ray microtomography Imaging and analysis of water transport mechanisms in sustainable paper straws Läs mer »

Functional lignin nanomaterials

This is a umbrella theme of research carried out in Sustainable Materials Chemistry (SUSMATCHEM) research group in Stockholm University. We aim to make most out of lignin with minimal processing and chemical modification according to the principles of green chemistry. In addition to fundamental studies of structure and properties of lignin and lignin nanoparticles, we …

Functional lignin nanomaterials Läs mer »

Upscaling of natural plastic alternatives: towards a sustainable industry

The extensive use of fossil-based plastic around the world is accelerating climate change. The global life cycle GHG emissions of fossil-based plastics were 1.7 Gt of CO2 equivalent in 2015 and would reach 6.5 Gt CO2 equivalent by 2050 if the current plastic demand trend were to continue. However, legislations and consumers are pushing the …

Upscaling of natural plastic alternatives: towards a sustainable industry Läs mer »

Colloidal properties of nanocellulose dispersions

The project aim is to control the stability and orientation of nanocellulose particles, by understanding the fundamental colloidal interactions between them in aqueous media. The information will then be used to create ordered and self-organized structures from nanocellulose dispersions. This knowledge is of great importance, since many nanocellulose based materials today are produced directly from …

Colloidal properties of nanocellulose dispersions Läs mer »

Circular cellulose to textile fiber production

The overall aim is to enable an upscaled process for textile fiber production based on alternative cellulose rich feedstocks together with TreeToTextile’s process, which is resource and energy-efficient without use of toxic chemicals. The proposed project focuses on the knowledge development for utilization of cellulose from residual streams, such as agricultural waste streams, recycled cartonboard/paper, …

Circular cellulose to textile fiber production Läs mer »