TREESEARCH logotype 2 black


2023 Sep 22




Stockholms universitet / online
Natalia Fijol


Natalia Fijol

More Info

Full thesis

Defence of doctoral thesis: Natalia Fijol – 3D printing of Green Water Purification Filters Design towards Sustainable and Scalable Biocomposite Materials

Stockholms universitet | WWSC

The defense is taking place at Magnélisalen, Arrhenius Laboratories, Stockholm University, and is possible to follow via Zoom.

Opponent: Professor Alexander Bismarck, University of Vienna, Austria

Supervisor: Professor Aji Mathew


The globally escalating water pollution and water scarcity necessitates the development of efficient and sustainable water treatment technologies. This thesis investigates the feasibility of utilizing renewable and waste materials in the form of green composites for the fabrication of water purification filters via Fused Deposition Modelling (FDM).

The first system studied within this thesis is based on the biobased thermoplastic polymer – polylactic acid (PLA), which serves as a composite matrix that is reinforced and functionalized with an array of green materials including fish-scale extracted hydroxyapatite (HAp), 2,2,6,6 – tetramethylpiperdine-1-oxyl (TEMPO) – oxidized cellulose nanofibers (TCNF), chitin nanofibers (ChNF), and bioinspired metal-organic framework – SU-101. All the developed PLA-based biocomposites exhibited great design flexibility and excellent printability, leading to the development of high surface-finish quality water purification filters of various geometries and porosity architectures. The developed filters successfully removed various contaminants from water. High capability for removal of metal ions from both, model solutions (reaching removal capacity towards Cu2+ ions of 208 mg/gNF and 234 mg/gNF for ChNF/PLA and TCNF/PLA filters, respectively, compared to only 4 mg/g for PLA filters), as well as from an actual mine effluent, reaching removal efficiency towards i.a. Mn2+ ions of over 50 % was demonstrated. Moreover, the developed TCNF/PLA and ChNF/PLA filters successfully removed microplastics from laundry effluent with over 70 % separation efficiency. The PLA-based biocomposite filters surface-functionalized with SU-101 were also suitable for the removal of cationic dye, methylene blue (MB), from water with removal efficiencies of over 40 %.

The second composite system explored the possibility of using post-consumer polycotton textile waste as a functional entity for the polyethylene terephthalate glycol (PETG) matrix, for the fabrication of 3D printing filaments, which can be further processed into highly functional water purification filters by the FDM. The conducted TEMPO-mediated oxidation of the polycotton garments introduced negatively charged carboxylic groups onto the 3D printing filament’s surface and consequently, onto the 3D printed structures, yielding filters suitable for removal of cationic dyes, such as MB, from water.

Apart from being evaluated for their ability to remove various contaminants from water, the filters have been subjected to a series of tests to assess the homogeneity of the filler dispersion in the polymer matrix as well as the filters’ permeability and mechanical stability. The high throughput character of the filters was demonstrated, as e.g., for the HAp/PLA filters the calculated flux reached 2×106Lm-2h-1bar-1. The reinforcing impact of the nanospecies on the polymer matrix in the gradient porosity filters was investigated and so, it was shown that the addition of ChNF and TCNF fibers into PLA increases their Young’s modulus value from 550.7 ± 2.8 MPa, to 622.7 ± 1.6 MPa and 702.9 ± 5.4 MPa, respectively. Moreover, the lifespan of the filters was assessed by subjecting them to an accelerated ageing procedure in water, which have shown that the TCNF/PLA and ChNF/PLA filters could serve up to eight and five months, respectively, while maintaining their functionality and good mechanical performance. Furthermore, the study revealed that the filters are indeed biodegradable, as after prolonged exposure to water at elevated temperatures, they have fully disintegrated.

Overall, the obtained results demonstrate the feasibility of combining renewable and recycled materials with 3D printing technology to create water purification filters suitable for the removal of a wide variety of contaminants from water.

Full thesis: