Gunnar Westman

The bio-feedstock of tomorrow for controlled and reversible chemical modification on the macro and microfiber level 

Itaconic acid, a di-carboxylic acid produced from citric acid or fermentation of sugars, is predicted to become a valuable bio-based chemical for the future, making it interesting for applications in cellulose based functional materials. This project will investigate the tailored modification of Bleached Kraft Pulp (BKP) with itaconic derivatives. Since the reactivity to a large […]

The bio-feedstock of tomorrow for controlled and reversible chemical modification on the macro and microfiber level  Läs mer »

Scale-up of sustainable production of dialdehyde cellulose and dialcohol cellulose

The project is a collaboration between Chalmers, KTH, BillerudKorsnäs and TetraPak.  The aim of the project is to develop a closed or semi-closed techno-economical feasible process for production of Dialdehyde cellulose, DAC and its derivatives with a target to replace plastic materials in different applications such as thermoforming, extrusion and moulding.  The project will have

Scale-up of sustainable production of dialdehyde cellulose and dialcohol cellulose Läs mer »

Biocomposites from fibres and nanocellulose

The project is a post-doc project within WWSC 2.0 The engineering aim brought forward in the project is to produce composities by using chemically modified fibres and nanocellulose and use these as reinforcing-structural elements in a polymer matrix. The resulting composites material must be manufactured with conventional, possible slightly modified, polymer processing techniques in order

Biocomposites from fibres and nanocellulose Läs mer »

Biocomposites-Materials modification to increase the processabilty at high fiber content

The current application aims at facilitating a substantial increase in the content of renewable lignocellulosic fibers in fiber reinforced wood fiber polymer composites (WFPL). The target is to enable production of WFPL’s with a fiber content >> 60%. For the forest based industries, this will create new market segments within construction, automotive and industrial goods,

Biocomposites-Materials modification to increase the processabilty at high fiber content Läs mer »