Structure-properties relationship of covalently crosslinked cellulose networks

In this work, the structure-property relationship of covalently crosslinked cellulose networks is studied by utilizing   surface modified cellulose nanofibrils and polymer links of defined structure and molecular weight. The effect of  molecular weight, chemical functionality and concentration on specific surface area, swelling, and mechanical properties of the hydrogel networks will be investigated.

Bio-sourced, oven-dried and wet-stable foams based on cellulose and amyloid nanofibrils

In the recent decades, foams have been extensively used for different applications such as: packaging, thermal and acoustic insulation, energy storage, and water purification. However, fabrication of foams from renewable resources through green methods with scale-up potential is challenging. In this context, cellulose nanofibrils (CNFs) as the most abundant bio-derived nanofibrils with outstanding physical properties […]

Defibrillation of cellulosic substrates by novel bio-based ionic liquids 

New bio-based ionic liquids were developed as a greener and simple pathway for the activation of cellulosic substrates compatible with chemical modification (such as in situ polymerization). Preliminary experiments showed that these ionic liquids promote swelling/dispersing/defibrillation/partial dissolution of cellulose while retaining cellulose I crystalline structure after regeneration (full dissolution is not achieved). To get a […]

Cellulose-based organic solar cells via spray deposition

In this project, we use spray deposition to fabricate cellulose-based, flexible organic solar cells. We use TEMPO-cellulose nanofibrils (TEMPO-CNF) as sustainable substrate material, flexible silver- or copper-nanowires (AgNW-/CuNW) as electrode material, conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as electron blocking layer, and a mixture of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methylester (PCBM) as […]

Bottom-up assembly of synthetic plant cells

Recently, isolated CNFs has been utilized as outer cell wall to assemble around micro containers (Paulraj, T. et al., Nat. Comm., 2020). In such an assembly termed as “plantosomes” or synthetic plant cell, the lipid growth was regulated by changes in the pH or ions, similar to what occurs in plant cells. This project focuses […]

Upgrading recycled thermoplastics using cellulose oxalate for a more sustainable future 

The absolute majority of plastic used today are fossil-based thermoplastics such as polypropylene and polyethylene. To an extent these plastics are recycled through mechanical recycling but the recycled plastic is mainly used for low-end, low quality products. This is due to decreased mechanical properties and due to that the recycled plastic often obtains a black […]

Nanolatexes for cellulose modification

Latex nanoparticles can be prepared via RAFT-mediated polymerization-induced self-assembly (PISA) in water. They are tailor-made and highly versatile nanoparticles that can be used for modification of cellulosic fibers due to their high affinity. Part of WWSC.

Cuticle-inspired barriers for lignocellulose materials

We have created moisture-barrier films using the second most abundant C16 hydroxy fatty acid (Fig. 1)1. These are semicrystalline materials with different degrees of toughness. The material shows a high “apparent” hydrophobicity, as revealed by contact angle measurements (110-130°, much higher than for PLA). The reason is due to the rough surface that we create […]

Sustainable High Performance Polymers from Functional Building-Blocks Created in Water

The projects aim to develop new materials based on renewable resources. The synthetic strategy involved is highly modular. This modularity enables a plethora of monomeric building blocks in one step. The final materials originate from abundant, cheap, and renewable reactants, meaning that the developed material would apply to all applications, ranging from advanced biomedical applications […]

Barrier and physicochemical properties of structured cellulose materials

Structured cellulose materials can form quite dense structures, which then yields high gas barrier properties. This has been shown for e.g. cellulose nanofibrillar films. The reason is most probably that these fibrils arranges them self side-by-side locally to the extent that it is often difficult to distinguish individual fibrils in the solidified films.  In this project […]

Sustainable biocomposites

My research is about molded wood fibers, nanocellulose films, and polymer matrix biocomposites for desired properties, particularly mechanical performance within a sustainable development framework.Understanding the process, structure, and properties of hot-pressed biocomposites is the primary research question.