KTH

SISTERS

KTH is taking part in the EU funded Horizon 2020 project SISTERS. SISTERS aims to reduce food loss and food waste in the main different stages of the Food Value Chain in Europe through innovations targeted to each link of the value chain: new tools to primary producers for promoting direct and Short Chain sales […]

SISTERS Läs mer »

Structure, Dynamics and Interactions of Nanofibres in Dilute Hydrodynamically Forced Systems

The ever increasing threat from climate change has spurred the demand for innovative, sustainable materials that could reduce our dependence on fossil fuels. Dispersions of cellulose nanofibrils (CNFs), derived from wood, can be spun into filaments that exhibit favourable mechanical properties. However, the structure, dynamics and interactions of the CNFs during the spinning process, which

Structure, Dynamics and Interactions of Nanofibres in Dilute Hydrodynamically Forced Systems Läs mer »

Mechanical aspects of bio based composites

The work consists of understanding the mechanical aspects of novel bio-based composites by exploring microstructures, weak interfaces, anisotropy, and lamella thickness. My current projects are (i) in situ mechanical tests with Deben microtester and scanning electron microscopes on a thin layer of montmorillonite clay on hydroxyethylcellulose films to investigate interfacial (adhesion) properties between the constituents,

Mechanical aspects of bio based composites Läs mer »

Deformation and fracture mechanisms of wood and wood polymer biocomposites

The main objective of this project is to study the deformation and fracture mechanisms of wood and polymer impregnated wood biocomposites, characterize the mechanical properties and relate them to structural differences. In this project, strain and deformation fields are measured, during mechanical loading, using digital image correlation which is useful for material comparison, also to

Deformation and fracture mechanisms of wood and wood polymer biocomposites Läs mer »

Molecular Basis of the Interactions and Recalcitrance of Lignocellulosic Biomass

Lignocellulosic biomass represents the main renewable resource from the biosphere for the production of biofuels, platform chemicals and bio-based materials. Lignocellulose consists of a complex polymeric network of cellulose microfibrils embedded in a matrix of hemicelluloses, pectins, and lignins with exquisite organization from the nano- to the microscale. However, the heterogeneity of the lignocellulose polymeric

Molecular Basis of the Interactions and Recalcitrance of Lignocellulosic Biomass Läs mer »

The kinetics of lignin extraction in oxygen delignification.

The current and future environmental challenges call for improved and more sustainable processes in the pulp industry. To contribute to a sustainable and competitive Swedish bioeconomy the pulp industry needs to increase efficiency without increasing the use of hazardous chemicals. Oxygen delignification is a unit process that has been used in pulp mill fiberlines between

The kinetics of lignin extraction in oxygen delignification. Läs mer »

BioUPGRADE – Biocatalytic upgrading of natural biopolymers for reassembly as multipurpose materials

BioUPGRADE unites expertise in functional genomics and material science to deliver breakthrough biotechnologies that sustainably upgrade nature’s main structural biopolymers into high-value and multipurpose materials.Living organisms drive our planetary carbon cycle via biocatalysts that transform CO2 into an enormous array of diverse and functional molecules. A significant fraction of this carbon is transformed into structural

BioUPGRADE – Biocatalytic upgrading of natural biopolymers for reassembly as multipurpose materials Läs mer »

Functional lignin nanomaterials

This is a umbrella theme of research carried out in Sustainable Materials Chemistry (SUSMATCHEM) research group in Stockholm University. We aim to make most out of lignin with minimal processing and chemical modification according to the principles of green chemistry. In addition to fundamental studies of structure and properties of lignin and lignin nanoparticles, we

Functional lignin nanomaterials Läs mer »

Upscaling of natural plastic alternatives: towards a sustainable industry

The extensive use of fossil-based plastic around the world is accelerating climate change. The global life cycle GHG emissions of fossil-based plastics were 1.7 Gt of CO2 equivalent in 2015 and would reach 6.5 Gt CO2 equivalent by 2050 if the current plastic demand trend were to continue. However, legislations and consumers are pushing the

Upscaling of natural plastic alternatives: towards a sustainable industry Läs mer »

Colloidal properties of nanocellulose dispersions

The project aim is to control the stability and orientation of nanocellulose particles, by understanding the fundamental colloidal interactions between them in aqueous media. The information will then be used to create ordered and self-organized structures from nanocellulose dispersions. This knowledge is of great importance, since many nanocellulose based materials today are produced directly from

Colloidal properties of nanocellulose dispersions Läs mer »