1-wood components

Structure-properties relationship of covalently crosslinked cellulose networks

In this work, the structure-property relationship of covalently crosslinked cellulose networks is studied by utilizing   surface modified cellulose nanofibrils and polymer links of defined structure and molecular weight. The effect of  molecular weight, chemical functionality and concentration on specific surface area, swelling, and mechanical properties of the hydrogel networks will be investigated.

Structure-properties relationship of covalently crosslinked cellulose networks Läs mer »

BIOdegradable vegan networks from REcycled agro-food waste as sustainable single-use abSORBents (BioRESorb)

The objective is to develop biodegradable absorbents containing nonwoven fiber networks from agro-food biomass waste. The material's structure-absorption relationship will be investigated and designed to make a fully bio-based absorbent core encapsulated in a natural nonwoven fabric. The raw materials will also be combined with other natural polymers to provide additional functionality (antimicrobial or binding

BIOdegradable vegan networks from REcycled agro-food waste as sustainable single-use abSORBents (BioRESorb) Läs mer »

Sustainable High Performance Polymers from Functional Building-Blocks Created in Water

The projects aim to develop new materials based on renewable resources. The synthetic strategy involved is highly modular. This modularity enables a plethora of monomeric building blocks in one step. The final materials originate from abundant, cheap, and renewable reactants, meaning that the developed material would apply to all applications, ranging from advanced biomedical applications

Sustainable High Performance Polymers from Functional Building-Blocks Created in Water Läs mer »

Theoretical study of lignin swelling in atomistic details

In this project vi use molecular dynamics (MD) simulations to investigate hygroscopic properties of various lignins. Our hope is that structure and dynamics on the atomistic level of details will complement existing macromechanical models. The goal is to test existing atomistic models of lignin subject to its interactions with water. The output of the project

Theoretical study of lignin swelling in atomistic details Läs mer »

Microscopic computed tomography aided finite element modelling of wood

Laboratory X-ray tube-based microscopic computed tomography (XµCT) aided finite element (FE) modelling considers XµCT data to characterize key engineering properties needed for modelling of material behavior. The method includes steps such as XµCT scanning, segmentation, meshing, and fiber reconstruction and can be supported by techniques such as digital image correlation and digital volume correlation. At

Microscopic computed tomography aided finite element modelling of wood Läs mer »

Characterization of water transport in lignocellulosic systems

The aim of the doctoral project is to understand water transport phenomena in lignocellulosic systems better. The focus thereby lies on the characterization of cellulosic dispersions as well as wood-based materials employing state-of-the-art techniques such as nuclear magnetic resonance spectroscopy (NMR), environmental scanning electron microscopy (ESEM) neutron scattering as well as magnetic resonance imaging (MRI).

Characterization of water transport in lignocellulosic systems Läs mer »

Fundamentals of nanoscale assembly of cellulose nanofiber

I am interested in fundamentals of cellulose nanofibers (CNF) and cellulose nanocrystals (CNC) in dilute, semi-dilute, and crowded environment. Specifically, for CNFs, semi-flexibility of fibers and its effect on nano-scale dynamics is a key aspect of my project. At the moment, combining simulations with experiments (X-ray photon correlation spectroscopy) is the strategy to proceed the

Fundamentals of nanoscale assembly of cellulose nanofiber Läs mer »

Structural Modification Softwood Pulp Cell Wall Under Extreme Pressure Conditions 

The ability to modify the structure of the wood-pulp fibre cell wall structure is an attractive means to obtain increased accessibility to the fibre interior and enable functionalization such as controlled drug delivery, interpenetrated networks, and selective removal of metal ions from aqueous mixtures just to mention a few examples. By changing the physical state

Structural Modification Softwood Pulp Cell Wall Under Extreme Pressure Conditions  Läs mer »

Mechanical behavior of all-lignocellulose composites 

In this study, we investigated property differences and failure mechanisms of hot-pressed, binder-free wood fiber composites. Random-in-plane microfibrillated lignocellulose (MFLC) composites showed better mechanical properties than microscale wood fibers WF due to stronger strain-hardening from lower porosity and better interfibrillar adhesion, provided by the intrinsic lignin-hemicellulose binder. Axially oriented wood fiber composites (O-WF) reached comparable

Mechanical behavior of all-lignocellulose composites  Läs mer »