Characterization of paperboard for creasing and folding
To form a package with desired properties, paperboard is creased and folded. Creasing creates delamination cracks which during folding cause the plies to buckle and form a permanent corner. The delamination cracks facilitate folding but reduce the load-bearing capacity of the packaging. The processes must therefore be controlled. The result is affected both by the […]
Cuticle-inspired barriers for lignocellulose materials
We have created moisture-barrier films using the second most abundant C16 hydroxy fatty acid (Fig. 1)1. These are semicrystalline materials with different degrees of toughness. The material shows a high “apparent” hydrophobicity, as revealed by contact angle measurements (110-130°, much higher than for PLA). The reason is due to the rough surface that we create […]
Sustainable High Performance Polymers from Functional Building-Blocks Created in Water
The projects aim to develop new materials based on renewable resources. The synthetic strategy involved is highly modular. This modularity enables a plethora of monomeric building blocks in one step. The final materials originate from abundant, cheap, and renewable reactants, meaning that the developed material would apply to all applications, ranging from advanced biomedical applications […]
Development of thermoplastic lignocellulose based materials
The aim of this project is to develop and increase the knowledge of thermoplastic materials from bleached pulp through minimal chemical modification.
Barrier and physicochemical properties of structured cellulose materials
Structured cellulose materials can form quite dense structures, which then yields high gas barrier properties. This has been shown for e.g. cellulose nanofibrillar films. The reason is most probably that these fibrils arranges them self side-by-side locally to the extent that it is often difficult to distinguish individual fibrils in the solidified films. In this project […]
Sustainable biocomposites
My research is about molded wood fibers, nanocellulose films, and polymer matrix biocomposites for desired properties, particularly mechanical performance within a sustainable development framework.Understanding the process, structure, and properties of hot-pressed biocomposites is the primary research question.
Processing of organosolv fractions for a functionalization and valorization in biobased materials
Optimization of organosolv wood fractioning is performed to obtain pulp containing cellulose, hemicellulose, andlow levels of lignin. The pulp is functionalized to achieve specific fibre properties, such as water stability. The functionalized fibres are evaluated in industrial partners’ products, i.e. biobased foams, to provide valuable feedback for optimization of the functionalization procedures based on industry […]
Synthesis, Characterization, Structure and Properties of Novel Non-Isocyanate Polyurethanes

To prepare novel biocomposites between cellulose (nano)fillers (nanofibers and nanocrystals) and NIPU thanks to their propensity to set up hydrogen bonding and interfacial covalent cross-linking with them.ESR9: To design biocomposites from novel waterborne or solvent-free functional NIPU polymers, where interface aspects and dispersion considerations are emphasized in order to achieve desired properties and processing characteristics.
Characterization of water transport in lignocellulosic systems
The aim of the doctoral project is to understand water transport phenomena in lignocellulosic systems better. The focus thereby lies on the characterization of cellulosic dispersions as well as wood-based materials employing state-of-the-art techniques such as nuclear magnetic resonance spectroscopy (NMR), environmental scanning electron microscopy (ESEM) neutron scattering as well as magnetic resonance imaging (MRI).
Catalytic functionalization of lignin
In this project we functionalize lignin using catalysts to form functional materials suitable for crosslinking to thermosets and/or composite materials.
Tribocorrosion performance of cellulose bio-base hydraulics fluids and their application in wave energy converters.
Offshore wave energy converters (WECs) rely on different mechanical sub-systems such as hydraulic cylinders, joints, hinges, cables, gears and bearings to convert and transmit the kinematic energy transported by the waves and tides into mechanical usable energy. In order to comply with the increasing environmental regulations, and protect the mechanical moving components exposed to the […]
Understanding the mechanical processes in deep-drawing and press-forming of compacted paper laminates
Compacted paper laminates can be formed by deep-drawing or press-forming to produce packaging solutions with height to diameter ratios not reachable with conventional thermoforming machines. These processes involve complex interactions of the fibres in the compacted paper layers and between these layers, including the bonding between them, which can be made either with glue or […]