Triboelectric particle filtration
The objective of this PhD student project is to investigate triboelectric air filtration, involving design of filter materials with high particle retention and low pressure drop. Due to a self-charging ability, the developed material is expected to function similar to an electrofilter and retain airborne, polluting particles harmful to humans, as well as bacteria and […]
A new XRF analysis develops high yield pulp with even sulfonate distribution at fiber level for improved renewable packaging
This project addresses the main challenges of using environmentally friendly, renewable packaging materials due to the widespread use of plastic in the packaging industry. This interdisciplinary project aims to address the uneven distribution of fiber sulfonation and softening in wood chips, which is currently poorly understood at a micro-level. After impregnation, the distribution of sulfonation […]
Microfiber
This project has addressed the major bottlenecks in using environmentally friendly, renewable packaging materials as plastic dominates the packaging industry. This interdisciplinary project aims to fundamentally resolve the degree of roughness, i.e. the amount of fiber sulfonation and softening prior to defibration, which is unknown at the micro level. Typically, the distribution of sulfonation in […]
NeoPulp – New perspective to the development of pulp fibre properties
Heterogeneity is one of the fundamental scientific and technological challenges of all bio-based materials. The research area of NeoPulp is pulping and papermaking processes. We plan to study the heterogeneity between fibres that affects both process performance and the properties of current and new fibre-based materials. This is a largely unexplored research area where the […]
Cellulose-based triboelectric filters for airborne particles (Tribofilter)

The project aims to design and investigate a novel cellulose-based filter material with high particle retention and low-pressure drop based on triboelectric effect. The developed material is thought to act as a self-charging electrofilter that retains polluting particles harmful to humans.Air pollution caused by particulate matters (PMs) has raised serious concerns due to their threats […]
Molecularly designed cellulose materials for triboelectric applications
Cellulose films possesses favorable triboelectric properties otherwise only found in synthetic, oil-based polymer materials. This can open up entirely new possibilities within the area of internet-of-things (IoT), which is expected to grow significantly in the coming decades. Cheap and sustainable sensor devices based on renewable, self-electrified systems without the need of batteries, self-powered by insignificant […]
Native cellulose’s interplay in materials and dispersions (CELLO)
This project supported by the Swedish Research Council (Vetenskapsrådet) focus on native cellulose´s interplay in materials and dispersions. The overall aim is to study and explain the intra- and intermolecular interactions of cellulose which occur during dissolution, in dispersions and in the regeneration of novel nanobiocomposite materials.
Novel use of native cellulose in dispersions and functional biocomposites
This project supported by the FORMAS and Interreg Sverige-Norge specifically focuses on design and preparation of cellulose-based nanocomposites with added functionalities such as e.g. barrier, antimicrobial, catalytic and electronic properties, starting from water-based solutions of wood cellulose.
DRIVE
DRIVE PROJEKTET – Ny kunskap för att stimulera regional tillväxt genom åtta aktiviteter för innovativa gröna transporter med engagemang från ett 30-tal företag och ett antal offentliga aktörer. SKÖRDA – Nya typer av vindytor och termoelektriska system för förnyelsebar energi från vind och markkommer att utvecklas med hjälp från industriella aktörer.LAGRA – Superkondensatorer, en typ […]
EcoSys – Eco-effective processes and systems
The main purpose of EcoSys is to develop and implement energy-saving technologies at production units producing mechanical pulp with high wood yield (> 90%) and thus also demonstrate and further improve the environmental and sustainability aspects of mechanical pulp manufacturing. Mechanical pulp is durable and resource efficient since it is manufactured with a very high […]
ModDD – Process modeling and new technical solutions for increased production rate

The aim of the project is to provide knowledge on how double disk refining can be more energy efficient. To increase the process efficiency it has been shown important to have a high production flow through the refiner and also apply large forces on the fiber material in the refiner gap. This to reduce hysteresis […]
Cellulosa för bionedbrytbara, töjbara och elektriskt funktionella tillämpningar
Projektet fokuserar på kompositmaterial med nanocellulosa, modifiering och regenerering av cellulosa, samt elektriskt ledande polymerer för biovänliga tillämpningar inom flexibel elektronik och energilagring. Project partner: Stanford University