TREESEARCH logotype 2 black

Project

Bio-sourced, oven-dried and wet-stable foams based on cellulose and amyloid nanofibrils

In the recent decades, foams have been extensively used for different applications such as: packaging, thermal and acoustic insulation, energy storage, and water purification. However, fabrication of foams from renewable resources through green methods with scale-up potential is challenging. In this context, cellulose nanofibrils (CNFs) as the most abundant bio-derived nanofibrils with outstanding physical properties …

Bio-sourced, oven-dried and wet-stable foams based on cellulose and amyloid nanofibrils Läs mer »

Structure-property relationships in lignin-based porous carbon materials for water purification

Good water quality is essential to human health, social and economic development, as well as the ecosystem. Industrialization and urbanization, together with the explosive population growth, have caused a great challenge for maintaining safe and clean water resources. Among many strategic and research activities for water protection, a direct approach is to develop biobased porous …

Structure-property relationships in lignin-based porous carbon materials for water purification Läs mer »

Defibrillation of cellulosic substrates by novel bio-based ionic liquids 

New bio-based ionic liquids were developed as a greener and simple pathway for the activation of cellulosic substrates compatible with chemical modification (such as in situ polymerization). Preliminary experiments showed that these ionic liquids promote swelling/dispersing/defibrillation/partial dissolution of cellulose while retaining cellulose I crystalline structure after regeneration (full dissolution is not achieved). To get a …

Defibrillation of cellulosic substrates by novel bio-based ionic liquids  Läs mer »

Cellulose-based organic solar cells via spray deposition

In this project, we use spray deposition to fabricate cellulose-based, flexible organic solar cells. We use TEMPO-cellulose nanofibrils (TEMPO-CNF) as sustainable substrate material, flexible silver- or copper-nanowires (AgNW-/CuNW) as electrode material, conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as electron blocking layer, and a mixture of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methylester (PCBM) as …

Cellulose-based organic solar cells via spray deposition Läs mer »

Upgrading recycled thermoplastics using cellulose oxalate for a more sustainable future 

The absolute majority of plastic used today are fossil-based thermoplastics such as polypropylene and polyethylene. To an extent these plastics are recycled through mechanical recycling but the recycled plastic is mainly used for low-end, low quality products. This is due to decreased mechanical properties and due to that the recycled plastic often obtains a black …

Upgrading recycled thermoplastics using cellulose oxalate for a more sustainable future  Läs mer »

Nanolatexes for cellulose modification

Latex nanoparticles can be prepared via RAFT-mediated polymerization-induced self-assembly (PISA) in water. They are tailor-made and highly versatile nanoparticles that can be used for modification of cellulosic fibers due to their high affinity. Part of WWSC.