TREESEARCH logotype 2 black

VR

A multiscale modelling approach aided by X-ray techniques to deepen the understanding of the effect of climate change on the hygromechanical behaviour of wood

Climate change has shown to alter the mechanical properties of wood. This suggest an alteration of the hygromechanical behaviour, behaviour that by itself is not fully elucidated yet. The deeper understanding of the hygromechanics of wood is important in the correct prediction and interpretation of drying and long-term behaviour of this material. In this light, […]

A multiscale modelling approach aided by X-ray techniques to deepen the understanding of the effect of climate change on the hygromechanical behaviour of wood Läs mer »

Atomistic understanding of biomass interaction with hydrotreating catalysts 

The development of catalysts to upgrade renewable feedstocks is vital for a sustainable future. Alternative feedstocks typically differ in chemical composition compared to fossil-based feedstocks and to further develop catalytic materials that enable efficient and environmentally friendly chemical processes, it is necessary to understand the functional mechanisms of these materials in detail.The high oxygen content

Atomistic understanding of biomass interaction with hydrotreating catalysts  Läs mer »

Defibrillation of cellulosic substrates by novel bio-based ionic liquids 

New bio-based ionic liquids were developed as a greener and simple pathway for the activation of cellulosic substrates compatible with chemical modification (such as in situ polymerization). Preliminary experiments showed that these ionic liquids promote swelling/dispersing/defibrillation/partial dissolution of cellulose while retaining cellulose I crystalline structure after regeneration (full dissolution is not achieved). To get a

Defibrillation of cellulosic substrates by novel bio-based ionic liquids  Läs mer »

Theoretical study of lignin swelling in atomistic details

In this project vi use molecular dynamics (MD) simulations to investigate hygroscopic properties of various lignins. Our hope is that structure and dynamics on the atomistic level of details will complement existing macromechanical models. The goal is to test existing atomistic models of lignin subject to its interactions with water. The output of the project

Theoretical study of lignin swelling in atomistic details Läs mer »

Molecular Basis of the Interactions and Recalcitrance of Lignocellulosic Biomass

Lignocellulosic biomass represents the main renewable resource from the biosphere for the production of biofuels, platform chemicals and bio-based materials. Lignocellulose consists of a complex polymeric network of cellulose microfibrils embedded in a matrix of hemicelluloses, pectins, and lignins with exquisite organization from the nano- to the microscale. However, the heterogeneity of the lignocellulose polymeric

Molecular Basis of the Interactions and Recalcitrance of Lignocellulosic Biomass Läs mer »

Functional lignin nanomaterials

This is a umbrella theme of research carried out in Sustainable Materials Chemistry (SUSMATCHEM) research group in Stockholm University. We aim to make most out of lignin with minimal processing and chemical modification according to the principles of green chemistry. In addition to fundamental studies of structure and properties of lignin and lignin nanoparticles, we

Functional lignin nanomaterials Läs mer »

Native cellulose’s interplay in materials and dispersions (CELLO)

This project supported by the Swedish Research Council (Vetenskapsrådet) focus on native cellulose´s interplay in materials and dispersions. The overall aim is to study and explain the intra- and intermolecular interactions of cellulose which occur during dissolution, in dispersions and in the regeneration of novel nanobiocomposite materials.

Native cellulose’s interplay in materials and dispersions (CELLO) Läs mer »

Structural characterization of cellulose and wood using electron microscopy and elecron diffraction

Cellulose is an essential constituent in the architecture of plants, where it contributes with extraordinary properties in terms of strength and stiffness. The aim of this project is to enable the development of new materials based on wood and cellulose, through the generation of new understanding regarding its structure all the way from the meso-scale

Structural characterization of cellulose and wood using electron microscopy and elecron diffraction Läs mer »

Low density and wet stable networks of cellulose nanofibrils with a tailored 3D shape for advanced applications

The project has the following purpose and aims: (a) Novel wet-stable, low density networks of cellulose nanofibrils (CNF) with a tailored 3D structure; (b) Tailored structures through controlled freeze-linking of the CNF followed by a formation of interpenetrated polymeric networks inside the cellulose network for controlled liquid spreading and liquid holding capacity; (c) Tailored 3D

Low density and wet stable networks of cellulose nanofibrils with a tailored 3D shape for advanced applications Läs mer »

Multiscale carbonized lignin nanomaterials with tailored structure for high electrochemical capacitance

The project work focuses on the development of functional nanostructured carbon material with large specific surface area and derived from sustainable materials, mainly lignin. Approaches such as electrospinning, freeze-casting as well as 3D printing can be involved. The possible applications of the carbon material can be electrodes in high-performance energy storage devices, for example, supercapacitors.

Multiscale carbonized lignin nanomaterials with tailored structure for high electrochemical capacitance Läs mer »

Valorization of lignocellulosic biomass for non-fossil chemicals and fuels using photolysis based on LED

Sawdust, a valuable lignocellulosic biomass, is today considered waste and burnt to generate heat. Depending on the sawing process, sawdust might be up to 50% of the timber. An energy efficient valorization of lignocellulosic waste into non-fossil chemicals and fuels minimizes the CO2 footprint and contributes to a sustainable production. A major challenge is to

Valorization of lignocellulosic biomass for non-fossil chemicals and fuels using photolysis based on LED Läs mer »