Project status : Ended

Understanding the mechanical processes in deep-drawing and press-forming of compacted paper laminates

Compacted paper laminates can be formed by deep-drawing or press-forming to produce packaging solutions with height to diameter ratios not reachable with conventional thermoforming machines. These processes involve complex interactions of the fibres in the compacted paper layers and between these layers, including the bonding between them, which can be made either with glue or …

Understanding the mechanical processes in deep-drawing and press-forming of compacted paper laminates Läs mer »

Upscaling of natural plastic alternatives: towards a sustainable industry

The extensive use of fossil-based plastic around the world is accelerating climate change. The global life cycle GHG emissions of fossil-based plastics were 1.7 Gt of CO2 equivalent in 2015 and would reach 6.5 Gt CO2 equivalent by 2050 if the current plastic demand trend were to continue. However, legislations and consumers are pushing the …

Upscaling of natural plastic alternatives: towards a sustainable industry Läs mer »

Assessment of the homogeneity of chemical modifications aimed for thermoplasticisation of cellulosic fibres

The strong driving force behind the sustainable biomaterial-based society is to replace the fossil fuel-based materials with renewable resources to for example address the climate change. Thermoplastic polymer products are used on a daily bases in every household and they need to possess the properties such as being ductile and formable. However, cellulosic materials do …

Assessment of the homogeneity of chemical modifications aimed for thermoplasticisation of cellulosic fibres Läs mer »

Wood cell walls on the nano level

The aim of the project is to obtain information about the nanoscale distribution of the constituents in wood cell walls, such as cellulose, hemicellulose, and lignin. To reach our aim we will use a novel infrared microscopy technique (nano FTIR microscopy) with the unique ability to provide chemical information with a spatial resolution of 20 …

Wood cell walls on the nano level Läs mer »

Self-assembly of 2D nanoflakes by using 1D cellulose nanofibrils

The earth-abundant 1D cellulose nanofibrils (CNFs) have shown the capacity to assemble different functional nanoparticles into 2D films and 3D foams. 2D nanomaterials such as MXene, graphene, transitional metal dichalcogenides (MoS2, WS2, etc.) are the ones of most promising functional materials in optical, electronic, and magnetic fields. We are using the 1D CNF to align …

Self-assembly of 2D nanoflakes by using 1D cellulose nanofibrils Läs mer »

Native cellulose’s interplay in materials and dispersions (CELLO)

This project supported by the Swedish Research Council (Vetenskapsrådet) focus on native cellulose´s interplay in materials and dispersions. The overall aim is to study and explain the intra- and intermolecular interactions of cellulose which occur during dissolution, in dispersions and in the regeneration of novel nanobiocomposite materials.

Novel use of native cellulose in dispersions and functional biocomposites

This project supported by the FORMAS and Interreg Sverige-Norge specifically focuses on design and preparation of cellulose-based nanocomposites with added functionalities such as e.g. barrier, antimicrobial, catalytic and electronic properties, starting from water-based solutions of wood cellulose.

Cellulose fibre/fibre interactions within molded fibre composites

This project aims to model cellulose fibre/fibre interactions using assembled CNF filaments produced by co-axial extrusion. These long, uniform filaments provide an excellent platform to investigate the impact of chemical and physical modification on joint strength. The findings of this work can then be used to a develop a better understanding of the interactions within …

Cellulose fibre/fibre interactions within molded fibre composites Läs mer »

Study of the multiscale networks of hemicellulose hydrogels by scattering techniques

The aim of the project is to develop multifunctional soft materials (hydrogels) from hemicelluloses for biomedical and food applications. We combine chemo-enzymatic methods to modify the molecular structure of the hemicelluloses and to tailor their assembly and rheological properties. In this project we want to understand the assembly mechanisms that drive the gel formation upon …

Study of the multiscale networks of hemicellulose hydrogels by scattering techniques Läs mer »

Processability of modified fibres for complex shaped parts

There is a drive towards the use of single-component materials in different applications, for example in opening and closure of packaging products and in single use plastics (SUP). This opens up the possible use of cellulose-based products, but increases the demand for new modification strategies for fibres. Modifications aiming at improving their processability and final …

Processability of modified fibres for complex shaped parts Läs mer »