Formas

Tailored Lignin-Derived Materials for Remediation of Water, Soil, and Sediments

This project aims to develop value-added lignin-derived materials and explore their potential in mitigating pollution from both emerging and regulated contaminants, including PFAS and other micropollutants. The target materials include lignin-derived carbons and biochars with tailored surfaces, modified lignins, lignin-based composites, and 3-D materials.

Tailored Lignin-Derived Materials for Remediation of Water, Soil, and Sediments Läs mer »

PolyTree

The main goal of this project called PolyTree is to enable a closed-loop sustainable materials economy by making renewable polyesters from wood-based building blocks through innovative green chemistries. While biopolymers have been actively developed, their technical properties lack in respect to fossil-based materials. Moreover, biopolymers are not necessarily biodegradable – or recyclable. This project embraces

PolyTree Läs mer »

Resource-efficient and non-toxic material flows from wood waste

With increasing focus on recycling, wood waste can increase its potential to generate secondary raw materials instead of incineration and landfilling. The quality of wood waste, as determined by the presence of material and mainly chemical impurities, is essential to ensure a high quality, clean and safe recycling loop for particleboards or for other emerging

Resource-efficient and non-toxic material flows from wood waste Läs mer »

Cellulose-based triboelectric filters for airborne particles (Tribofilter)

The project aims to design and investigate a novel cellulose-based filter material with high particle retention and low-pressure drop based on triboelectric effect. The  developed material is thought to act as a self-charging electrofilter that retains polluting  particles harmful to humans.Air pollution caused by particulate matters (PMs) has raised serious concerns due to their threats

Cellulose-based triboelectric filters for airborne particles (Tribofilter) Läs mer »

Enzymatic engineering of hemicellulose hydrogels

In this project we will engineer hemicellulose hydrogels using a wide range of enzymes, from oxidative laccases that introduce crosslinking to specific hydrolases that cleave selectively side chains from the hemicelluloses. We expect that the enzymatic treatments will modulate the network interactions in the hydrogels and the rheological properties. We will investigate the morphology and

Enzymatic engineering of hemicellulose hydrogels Läs mer »

Uncovering the synergistic effects between cellulose and lignin for advanced forest-based carbon fibers

Carbon fibers made completely from biobased material with a low climate impact is an area of research that have seen significant breakthroughs during the last years. Forest-based carbon fibers from certified forests have a high value and potential to stimulate new value chains in the area of light-weight composites, making it possible to use carbon

Uncovering the synergistic effects between cellulose and lignin for advanced forest-based carbon fibers Läs mer »

BIOdegradable vegan networks from REcycled agro-food waste as sustainable single-use abSORBents (BioRESorb)

The objective is to develop biodegradable absorbents containing nonwoven fiber networks from agro-food biomass waste. The material's structure-absorption relationship will be investigated and designed to make a fully bio-based absorbent core encapsulated in a natural nonwoven fabric. The raw materials will also be combined with other natural polymers to provide additional functionality (antimicrobial or binding

BIOdegradable vegan networks from REcycled agro-food waste as sustainable single-use abSORBents (BioRESorb) Läs mer »

Structure-property relationships in lignin-based porous carbon materials for water purification

Good water quality is essential to human health, social and economic development, as well as the ecosystem. Industrialization and urbanization, together with the explosive population growth, have caused a great challenge for maintaining safe and clean water resources. Among many strategic and research activities for water protection, a direct approach is to develop biobased porous

Structure-property relationships in lignin-based porous carbon materials for water purification Läs mer »