TREESEARCH logotype 2 black

KAW

Wood modification towards hierarchical catalyst

Electrocatalytic reaction is a green technology for sustainable energy conversion, materials design, environment remediation, and green chemistry, where the role of catalyst is essential. Hierarchical structures combining multi-scale pores are favorable due to combined high specific surface area, mass diffusion in the structure and accessibility to the surface. In nature, biological materials are much more

Wood modification towards hierarchical catalyst Läs mer »

Wood-based barriers for wood-based materials

Paper/wood-based materials suffer from poor barrier and moisture-sensitive properties (left figure). By learning how nature (plants/fruits) create moisture and gas barriers, we have developed crosslinked barrier biopolyesters (representing the cutin layer in plants) with also a process that yields a rough wax-like outer layer, similar to what is observed in plants, giving high surface hydrophobicity

Wood-based barriers for wood-based materials Läs mer »

Physical Structure and Interactions between Lignin and its Surroundings

The aim of the project is to gain a deeper fundamental understanding of how the classical structural factors and unique morphology of lignin affects the interaction between lignin and lignin-based materials and its surroundings. The affect of chemical structure and morphology on the material performance of lignin-based materials will be investigated along with the behavior

Physical Structure and Interactions between Lignin and its Surroundings Läs mer »

Water based wood treatment

For a more sustainable production of wood aerogel, treatment with the water based solvent, NaOH, can give the wood template a porous structure in sub-zero conditions. However, it is found that the porosity of the wood templates treated with NaOH (aq) can be affected at room temperature conditions as well. Towards a greener aerogel production,

Water based wood treatment Läs mer »

Structure-properties relationship of covalently crosslinked cellulose networks

In this work, the structure-property relationship of covalently crosslinked cellulose networks is studied by utilizing   surface modified cellulose nanofibrils and polymer links of defined structure and molecular weight. The effect of  molecular weight, chemical functionality and concentration on specific surface area, swelling, and mechanical properties of the hydrogel networks will be investigated.

Structure-properties relationship of covalently crosslinked cellulose networks Läs mer »

Cuticle-inspired barriers for lignocellulose materials

We have created moisture-barrier films using the second most abundant C16 hydroxy fatty acid (Fig. 1)1. These are semicrystalline materials with different degrees of toughness. The material shows a high “apparent” hydrophobicity, as revealed by contact angle measurements (110-130°, much higher than for PLA). The reason is due to the rough surface that we create

Cuticle-inspired barriers for lignocellulose materials Läs mer »

Sustainable biocomposites

My research is about molded wood fibers, nanocellulose films, and polymer matrix biocomposites for desired properties, particularly mechanical performance within a sustainable development framework.Understanding the process, structure, and properties of hot-pressed biocomposites is the primary research question.

Sustainable biocomposites Läs mer »

Structural Modification Softwood Pulp Cell Wall Under Extreme Pressure Conditions 

The ability to modify the structure of the wood-pulp fibre cell wall structure is an attractive means to obtain increased accessibility to the fibre interior and enable functionalization such as controlled drug delivery, interpenetrated networks, and selective removal of metal ions from aqueous mixtures just to mention a few examples. By changing the physical state

Structural Modification Softwood Pulp Cell Wall Under Extreme Pressure Conditions  Läs mer »

Mechanical behavior of all-lignocellulose composites 

In this study, we investigated property differences and failure mechanisms of hot-pressed, binder-free wood fiber composites. Random-in-plane microfibrillated lignocellulose (MFLC) composites showed better mechanical properties than microscale wood fibers WF due to stronger strain-hardening from lower porosity and better interfibrillar adhesion, provided by the intrinsic lignin-hemicellulose binder. Axially oriented wood fiber composites (O-WF) reached comparable

Mechanical behavior of all-lignocellulose composites  Läs mer »