TREESEARCH logotype 2 black

KAW

Biocomposites from fibres and nanocellulose

The project is a post-doc project within WWSC 2.0 The engineering aim brought forward in the project is to produce composities by using chemically modified fibres and nanocellulose and use these as reinforcing-structural elements in a polymer matrix. The resulting composites material must be manufactured with conventional, possible slightly modified, polymer processing techniques in order […]

Biocomposites from fibres and nanocellulose Läs mer »

Composite of lignin derivatives and conducting polymers for electro-capturing of toxic heavy metals

Among the 100% water on planet earth, less than 1% is liquid fresh water and about 0.0025% is available fresh water for drinking, food and industries. More than 90% of the fresh water is utilized for agriculture and industries. Pollution of water is thus an increasingly important problem. One of the most challenging depollution process

Composite of lignin derivatives and conducting polymers for electro-capturing of toxic heavy metals Läs mer »

Porous, optical and IR-absorbing cellulose for solar evaporators

This project aims at investigating how conducting polymers interact with forest-based materials to form hierarchically nanostructured aerogels. We will develop protocols for fine tuning the structural and mechanical properties of cellulose-base conducting aerogels, and to control the penetration of solar absorbers (i.e. conducting polymers) in the nanostructured forest-based aerogels. We will study how energy is

Porous, optical and IR-absorbing cellulose for solar evaporators Läs mer »

Soft cellulose-based robotics

The project is focused on the development of novel concepts for soft electromechanical actuators and robotics based on nanocellulose composites. Nanocellulose foams are light weight and compressible, making them ideal for functionalization for actuators. Magnetic and electronic functional composites will be developed and fabricated into novel device concepts. The project is part of WWSC.

Soft cellulose-based robotics Läs mer »

Polysaccharide films – formation and properties

Turning wood-based polymers and particles into films is vital for majority of their utilization (packaging, support materials) and for fundamental analytics (model surfaces for adsorption, interaction studies, strength characterization). Cellulose, hemicelluloses and lignins have distinct (from one another) intrinsic film formation behavior and properties that span from solubility, molecular weight and flexibility, and polarity. Main

Polysaccharide films – formation and properties Läs mer »

Novel Lignin Based Thermoset Resins

The project focuses on synthetic pathways to modify lignin to introduce chemical groups suitable for cross-linking reactions and elaboration on the mechanical properties of the formed materials. The main focus is allylation, introducing an allyl ether functionallity selectively on phenols, and thiol-ene reactions for cross-linking of the thermoset resin. This is performed on technical lignin

Novel Lignin Based Thermoset Resins Läs mer »

Advanced rheological characterization of cellulose based systems

Processing, e.g. extrusion, injection molding, typically involves rheologically complex materials in complex flow configurations. The deformation history therein experienced by materials is generally characterized by a series of shear, extensional, or a combination of the two deformations, at high isotopic pressures and temperatures. Therefore, a fundamental understanding of the material response in simple shear and

Advanced rheological characterization of cellulose based systems Läs mer »

Simulation and modelling of wood-based advanced functional materials

In this project we perform multi-scale theoretical modelling of wood-based materials and devices ranging from the Molecular Dynamics and ab initio simulations on the atomistic level to the drift-diffusion device simulation on the system level to answer the fundamental questions concerning material structure, morphology, polymerization, porosity, ion diffusion, role of water, solvents and many others,

Simulation and modelling of wood-based advanced functional materials Läs mer »

NMR as tool to study heterogeneity in biomass

In this project, the purpose is to implement solid-state NMR methods to obtain domain sizes in biopolymer composites and to determine molecular orientation distribution in anisotropic material. The ambition is to take advantage of recent methodological NMR development regarding spin diffusion and intrinsic chemical shielding tensor properties. The project is a part of WWSC

NMR as tool to study heterogeneity in biomass Läs mer »

Functionalized cellulose structures from aqueous alkaline systems

Even though aqueous alkaline systems are among the most prominent and sustainable conversion media for cellulose (of particular importance for large scale processes) fundamental understanding of principal molecular interactions in these systems is still limited, especially of those stabilizing cellulose solutions in aqueous alkali.   However, regardless of the nature of stabilizing interactions in these solutions,

Functionalized cellulose structures from aqueous alkaline systems Läs mer »

Enzyme discovery and structure-function investigation of carbohydrate-active enzymes – new tools for biomass tailoring

The plant cell wall is a highly complex structure, and the main constituent of wood as a material. Microorganisms can break down essentially all parts of the cell wall with time, and their enzymatic strategies can today be utilized thanks to the advances in molecular biology and biochemistry. The enzymes can be used as highly

Enzyme discovery and structure-function investigation of carbohydrate-active enzymes – new tools for biomass tailoring Läs mer »