TREESEARCH logotype 2 black

Billerud

Improved uniformity of the fibers liberated in the kraft pulp digester 

This project sets out to elucidate mass transport characteristics during delignification of wood chips as a means of understanding and controlling non-uniform delignification effects, associated to low efficiency and poor property control in the current pulping processes. To obtain information on local variations of delignification effect in a wood chip, the treated chips will be […]

Improved uniformity of the fibers liberated in the kraft pulp digester  Läs mer »

Förhorning av träfibrer

Projektet går ut på att genom experimentella studier bygga upp en kunskap kring förhorning av komponenterna i träfibrer. Förhorning är ett fenomen där, i nuläget praktiskt sett irreversibla, processer i samband med torkning förändrar fibrernas svällning och flexibilitet och därmed bindningsförmåga. Bindningsförmågan till andra fibrer har stor inverkan på hur starka fibernätverk kan skapas och

Förhorning av träfibrer Läs mer »

EXACT – Excellence in Advancing for a Circular Transition

The research school ‘EXACT- Excellence in Advancing for a Circular Transition’ combines bioeconomy with smart digitalization, in a collaboration between the two research groups Pro2BE and DAMI4.0 at Karlstad University. The Ph.D. students will develop energy-efficient digitalized production processes or products and high-quality bio-based materials. The aim of this research school is to contribute to

EXACT – Excellence in Advancing for a Circular Transition Läs mer »

Characterization of paperboard for creasing and folding

To form a package with desired properties, paperboard is creased and folded. Creasing creates delamination cracks which during folding cause the plies to buckle and form a permanent corner. The delamination cracks facilitate folding but reduce the load-bearing capacity of the packaging. The processes must therefore be controlled. The result is affected both by the

Characterization of paperboard for creasing and folding Läs mer »

Understanding the mechanical processes in deep-drawing and press-forming of compacted paper laminates

Compacted paper laminates can be formed by deep-drawing or press-forming to produce packaging solutions with height to diameter ratios not reachable with conventional thermoforming machines. These processes involve complex interactions of the fibres in the compacted paper layers and between these layers, including the bonding between them, which can be made either with glue or

Understanding the mechanical processes in deep-drawing and press-forming of compacted paper laminates Läs mer »

The kinetics of lignin extraction in oxygen delignification.

The current and future environmental challenges call for improved and more sustainable processes in the pulp industry. To contribute to a sustainable and competitive Swedish bioeconomy the pulp industry needs to increase efficiency without increasing the use of hazardous chemicals. Oxygen delignification is a unit process that has been used in pulp mill fiberlines between

The kinetics of lignin extraction in oxygen delignification. Läs mer »

Multi scale modeling of the delignification kinetics during kraft cooking

The kraft process is today the dominant industrial technology for the production of pulp from wood.In this process, wood chips are boiled with chemicals in order to dissolve lignin, hemicellulose andextractives. The process itself contains several complex mass transport mechanisms, where thechemicals are to be transported into the wood chip and then further into the

Multi scale modeling of the delignification kinetics during kraft cooking Läs mer »

Transparenta, cellulosabaserade förpackningsmaterial med goda barriäregenskaper

I mark och hav ansamlas på grund av mänsklig aktivitet stora mängder plaster, ofta från påsaroch förpackningar. I värsta fall tar det flera hundra år för naturen att bryta ner dessa plaster.För att åtgärda denna miljöförstöring räcker det alltså inte bara att vi blir bättre på att återvinnaoch slänga vårt plastskräp på rätt sätt, utan

Transparenta, cellulosabaserade förpackningsmaterial med goda barriäregenskaper Läs mer »

Scale-up of sustainable production of dialdehyde cellulose and dialcohol cellulose

The project is a collaboration between Chalmers, KTH, BillerudKorsnäs and TetraPak.  The aim of the project is to develop a closed or semi-closed techno-economical feasible process for production of Dialdehyde cellulose, DAC and its derivatives with a target to replace plastic materials in different applications such as thermoforming, extrusion and moulding.  The project will have

Scale-up of sustainable production of dialdehyde cellulose and dialcohol cellulose Läs mer »

The effect of compaction parameters on the properties of high-deformable paper

This project addresses the challenges of producing high-deformable paper for 3D forming applications using the in-plane compaction process. Enabling 3D forming of advanced paper structures paves the way for complete elimination of plastic based packaging or partial replacement of plastic in multi-material packages, which aligns with current international strategies for a sustainable development of the

The effect of compaction parameters on the properties of high-deformable paper Läs mer »

Impact of compaction parameters on the mechanical properties of highly extensible paper

The possibility of producing three-dimensional advanced paper structures create the conditions for replacing plastic-based solutions or plastic details in packaging with multi-material and contributes in an essential way to strategies for a sustainable social development .  Within this context, the project deals with the challenge of producing highly stretchable paper for 3D forming applications through in-plane

Impact of compaction parameters on the mechanical properties of highly extensible paper Läs mer »