TREESEARCH logotype 2 black

Stora Enso

Improved uniformity of the fibers liberated in the kraft pulp digester 

This project sets out to elucidate mass transport characteristics during delignification of wood chips as a means of understanding and controlling non-uniform delignification effects, associated to low efficiency and poor property control in the current pulping processes. To obtain information on local variations of delignification effect in a wood chip, the treated chips will be […]

Improved uniformity of the fibers liberated in the kraft pulp digester  Läs mer »

Soft highly swelling fibres by alkali-activated chemical modification 

To make cellulose fibres more flexible and malleable, components inside the fibre must be properly modified, that is, the lignin, hemicellulose or cellulose needs to be at least partly transformed into a proper derivative. Several cellulose derivatives are today produced through chemical reactions that involves formation of ether bonds. To reach sufficient efficiency, these reactions

Soft highly swelling fibres by alkali-activated chemical modification  Läs mer »

EXACT – Excellence in Advancing for a Circular Transition

The research school ‘EXACT- Excellence in Advancing for a Circular Transition’ combines bioeconomy with smart digitalization, in a collaboration between the two research groups Pro2BE and DAMI4.0 at Karlstad University. The Ph.D. students will develop energy-efficient digitalized production processes or products and high-quality bio-based materials. The aim of this research school is to contribute to

EXACT – Excellence in Advancing for a Circular Transition Läs mer »

Preparation and use of lignocellulose nanomaterials in energy storage devices

Cellulose nanomaterials (CNs) obtained from fully-bleached (lignin-free) chemical fibers, such as cellulose nanoparticles (CNPs), cellulose nanofibers (CNFs), microfibrillated cellulose (MFC) have been a topic of extensive research during last decades since they constitute a biodegradable, renewable and naturally abundant resource with an important scientific and technological potential. However, the bleaching process is an energy-intensive process

Preparation and use of lignocellulose nanomaterials in energy storage devices Läs mer »

Efficient Washing of Paper grade pulp in the kraft process

The project contributes to strengthened Swedish competitiveness through its expected research results and new fundamental knowledge for the development of an efficient pulp washing process and thus through an increased pace of innovation in the transition to a circular economy. After pulping the wood chips, the resulting pulp fibres and cooking liquor are separated in a

Efficient Washing of Paper grade pulp in the kraft process Läs mer »

Modeling, processing and optimization of highly-filled polymer wood fiber composites 

Biocomposites are a critical ingredient in the context of overarching societal efforts to increase the use of renewable materials. Therefore, the use of polymer with natural fiber reinforcements is expected to increase significantly. A current drive for polymer biocomposites is to maximize the use of renewable content in mass production systems. However, the full potential

Modeling, processing and optimization of highly-filled polymer wood fiber composites  Läs mer »

The kinetics of lignin extraction in oxygen delignification.

The current and future environmental challenges call for improved and more sustainable processes in the pulp industry. To contribute to a sustainable and competitive Swedish bioeconomy the pulp industry needs to increase efficiency without increasing the use of hazardous chemicals. Oxygen delignification is a unit process that has been used in pulp mill fiberlines between

The kinetics of lignin extraction in oxygen delignification. Läs mer »

Circular cellulose to textile fiber production

The overall aim is to enable an upscaled process for textile fiber production based on alternative cellulose rich feedstocks together with TreeToTextile’s process, which is resource and energy-efficient without use of toxic chemicals. The proposed project focuses on the knowledge development for utilization of cellulose from residual streams, such as agricultural waste streams, recycled cartonboard/paper,

Circular cellulose to textile fiber production Läs mer »

Multi scale modeling of the delignification kinetics during kraft cooking

The kraft process is today the dominant industrial technology for the production of pulp from wood.In this process, wood chips are boiled with chemicals in order to dissolve lignin, hemicellulose andextractives. The process itself contains several complex mass transport mechanisms, where thechemicals are to be transported into the wood chip and then further into the

Multi scale modeling of the delignification kinetics during kraft cooking Läs mer »

Plasticization and partial depolymerization of lignocellulose-based materials  

This project is a part of the competence center FibRe. This particular PhD student project aims to plasticize the lignin in the cell walls. The first part will be to extract lignin from wood and wheat straw, and to evaluate how different plasticizers affect the material properties. This will then be extrapolated to lignocellulose-based fibers.

Plasticization and partial depolymerization of lignocellulose-based materials   Läs mer »

Design for Circularity: Lignocellulosic based Thermoplastics – FibRe

Global warming is one of the largest threats ever to our planet which can completely alter our living conditions. Human contributions to emissions of green-house gases must decrease, and a drastically decreased use of fossil resources is a key step to achieve this. Daunting 320 million tons of plastics are annually produced in the world,

Design for Circularity: Lignocellulosic based Thermoplastics – FibRe Läs mer »