TREESEARCH logotype 2 black

Ongoing

EXACT – Excellence in Advancing for a Circular Transition

The research school ‘EXACT- Excellence in Advancing for a Circular Transition’ combines bioeconomy with smart digitalization, in a collaboration between the two research groups Pro2BE and DAMI4.0 at Karlstad University. The Ph.D. students will develop energy-efficient digitalized production processes or products and high-quality bio-based materials. The aim of this research school is to contribute to […]

EXACT – Excellence in Advancing for a Circular Transition Läs mer »

BIOdegradable vegan networks from REcycled agro-food waste as sustainable single-use abSORBents (BioRESorb)

The objective is to develop biodegradable absorbents containing nonwoven fiber networks from agro-food biomass waste. The material's structure-absorption relationship will be investigated and designed to make a fully bio-based absorbent core encapsulated in a natural nonwoven fabric. The raw materials will also be combined with other natural polymers to provide additional functionality (antimicrobial or binding

BIOdegradable vegan networks from REcycled agro-food waste as sustainable single-use abSORBents (BioRESorb) Läs mer »

Atomistic understanding of biomass interaction with hydrotreating catalysts 

The development of catalysts to upgrade renewable feedstocks is vital for a sustainable future. Alternative feedstocks typically differ in chemical composition compared to fossil-based feedstocks and to further develop catalytic materials that enable efficient and environmentally friendly chemical processes, it is necessary to understand the functional mechanisms of these materials in detail.The high oxygen content

Atomistic understanding of biomass interaction with hydrotreating catalysts  Läs mer »

Structure-property relationships in lignin-based porous carbon materials for water purification

Good water quality is essential to human health, social and economic development, as well as the ecosystem. Industrialization and urbanization, together with the explosive population growth, have caused a great challenge for maintaining safe and clean water resources. Among many strategic and research activities for water protection, a direct approach is to develop biobased porous

Structure-property relationships in lignin-based porous carbon materials for water purification Läs mer »

Defibrillation of cellulosic substrates by novel bio-based ionic liquids 

New bio-based ionic liquids were developed as a greener and simple pathway for the activation of cellulosic substrates compatible with chemical modification (such as in situ polymerization). Preliminary experiments showed that these ionic liquids promote swelling/dispersing/defibrillation/partial dissolution of cellulose while retaining cellulose I crystalline structure after regeneration (full dissolution is not achieved). To get a

Defibrillation of cellulosic substrates by novel bio-based ionic liquids  Läs mer »

Cellulose-based organic solar cells via spray deposition

In this project, we use spray deposition to fabricate cellulose-based, flexible organic solar cells. We use TEMPO-cellulose nanofibrils (TEMPO-CNF) as sustainable substrate material, flexible silver- or copper-nanowires (AgNW-/CuNW) as electrode material, conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as electron blocking layer, and a mixture of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methylester (PCBM) as

Cellulose-based organic solar cells via spray deposition Läs mer »

Upgrading recycled thermoplastics using cellulose oxalate for a more sustainable future 

The absolute majority of plastic used today are fossil-based thermoplastics such as polypropylene and polyethylene. To an extent these plastics are recycled through mechanical recycling but the recycled plastic is mainly used for low-end, low quality products. This is due to decreased mechanical properties and due to that the recycled plastic often obtains a black

Upgrading recycled thermoplastics using cellulose oxalate for a more sustainable future  Läs mer »

Characterization of paperboard for creasing and folding

To form a package with desired properties, paperboard is creased and folded. Creasing creates delamination cracks which during folding cause the plies to buckle and form a permanent corner. The delamination cracks facilitate folding but reduce the load-bearing capacity of the packaging. The processes must therefore be controlled. The result is affected both by the

Characterization of paperboard for creasing and folding Läs mer »