TREESEARCH logotype 2 black

Ongoing

Sustainable High Performance Polymers from Functional Building-Blocks Created in Water

The projects aim to develop new materials based on renewable resources. The synthetic strategy involved is highly modular. This modularity enables a plethora of monomeric building blocks in one step. The final materials originate from abundant, cheap, and renewable reactants, meaning that the developed material would apply to all applications, ranging from advanced biomedical applications […]

Sustainable High Performance Polymers from Functional Building-Blocks Created in Water Läs mer »

Theoretical study of lignin swelling in atomistic details

In this project vi use molecular dynamics (MD) simulations to investigate hygroscopic properties of various lignins. Our hope is that structure and dynamics on the atomistic level of details will complement existing macromechanical models. The goal is to test existing atomistic models of lignin subject to its interactions with water. The output of the project

Theoretical study of lignin swelling in atomistic details Läs mer »

Processing of organosolv fractions for a functionalization and valorization in biobased materials

Optimization of organosolv wood fractioning is performed to obtain pulp containing cellulose, hemicellulose, andlow levels of lignin. The pulp is functionalized to achieve specific fibre properties, such as water stability. The functionalized fibres are evaluated in industrial partners’ products, i.e. biobased foams, to provide valuable feedback for optimization of the functionalization procedures based on industry

Processing of organosolv fractions for a functionalization and valorization in biobased materials Läs mer »

Microscopic computed tomography aided finite element modelling of wood

Laboratory X-ray tube-based microscopic computed tomography (XµCT) aided finite element (FE) modelling considers XµCT data to characterize key engineering properties needed for modelling of material behavior. The method includes steps such as XµCT scanning, segmentation, meshing, and fiber reconstruction and can be supported by techniques such as digital image correlation and digital volume correlation. At

Microscopic computed tomography aided finite element modelling of wood Läs mer »

Synthesis, Characterization, Structure and Properties of Novel Non-Isocyanate Polyurethanes

To prepare novel biocomposites between cellulose (nano)fillers (nanofibers and nanocrystals) and NIPU thanks to their propensity to set up hydrogen bonding and interfacial covalent cross-linking with them.ESR9: To design biocomposites from novel waterborne or solvent-free functional NIPU polymers, where interface aspects and dispersion considerations are emphasized in order to achieve desired properties and processing characteristics.

Synthesis, Characterization, Structure and Properties of Novel Non-Isocyanate Polyurethanes Läs mer »

Characterization of water transport in lignocellulosic systems

The aim of the doctoral project is to understand water transport phenomena in lignocellulosic systems better. The focus thereby lies on the characterization of cellulosic dispersions as well as wood-based materials employing state-of-the-art techniques such as nuclear magnetic resonance spectroscopy (NMR), environmental scanning electron microscopy (ESEM) neutron scattering as well as magnetic resonance imaging (MRI).

Characterization of water transport in lignocellulosic systems Läs mer »

Tribocorrosion performance of cellulose bio-base hydraulics fluids and their application in wave energy converters. 

Offshore wave energy converters (WECs) rely on different mechanical sub-systems such as hydraulic cylinders, joints, hinges, cables, gears and bearings to convert and transmit the kinematic energy transported by the waves and tides into mechanical usable energy. In order to comply with the increasing environmental regulations, and protect the mechanical moving components exposed to the

Tribocorrosion performance of cellulose bio-base hydraulics fluids and their application in wave energy converters.  Läs mer »

Preparation and use of lignocellulose nanomaterials in energy storage devices

Cellulose nanomaterials (CNs) obtained from fully-bleached (lignin-free) chemical fibers, such as cellulose nanoparticles (CNPs), cellulose nanofibers (CNFs), microfibrillated cellulose (MFC) have been a topic of extensive research during last decades since they constitute a biodegradable, renewable and naturally abundant resource with an important scientific and technological potential. However, the bleaching process is an energy-intensive process

Preparation and use of lignocellulose nanomaterials in energy storage devices Läs mer »

Efficient Washing of Paper grade pulp in the kraft process

The project contributes to strengthened Swedish competitiveness through its expected research results and new fundamental knowledge for the development of an efficient pulp washing process and thus through an increased pace of innovation in the transition to a circular economy. After pulping the wood chips, the resulting pulp fibres and cooking liquor are separated in a

Efficient Washing of Paper grade pulp in the kraft process Läs mer »

Modeling, processing and optimization of highly-filled polymer wood fiber composites 

Biocomposites are a critical ingredient in the context of overarching societal efforts to increase the use of renewable materials. Therefore, the use of polymer with natural fiber reinforcements is expected to increase significantly. A current drive for polymer biocomposites is to maximize the use of renewable content in mass production systems. However, the full potential

Modeling, processing and optimization of highly-filled polymer wood fiber composites  Läs mer »